International Journal of Engineering, Science and Mathematics

Vol. 6 Issue 7, November 2017,

ISSN: 2320-0294 Impact Factor: 6.238

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

CONSTRUCTION OF GENERALIZED DIRECTED ASSOCIATION SCHEME FROM COMPLETE BIPARTITE GRAPH

P.K.Manjhi*

	Abstract
Keywords: Association Scheme;	In this paper methods of construction of some class of Generalized Directed Association Scheme from complete bipartite graph is giventhen an approach to construct class Generalised Directed Association Scheme from complete n-partite graph is suggested.
Bipartite graph.	
	Copyright © 2017 International Journals of Multidisciplinary Research Academy. All rights reserved.

Author correspondence:

P. K. Manjhi, Assistant Professor, University Department of Mathematics, Vinoba Bhave University, Hazaribag-825301.

1. Introduction:

- 1.1 Association Scheme: An Association Scheme on a finite set X is define as a patition $C = \{C_1, C_2, C_3, ..., C_n\}$ of $X \times X$ which satisfies the following properties:
 - (i) $C_0 = \{(x, x) : x \in X\}$
 - (ii) For each $i \in \{1,2,3,...,n\}$ $C_i = C_i^{-1}$ where $C_i^{-1} = \{(y,x): (x,y) \in C_i\}$.
 - (iii) There exist a non negative integer p_{ij}^k for $0 \le i, j \le n$ such that for $(x, z) \in C_k$, the number of elements in the set $S = \{y: (x, y) \in C_i \text{ and } (y, z) \in C_i\}$
 - (iv) is equal to p_{ij}^k and this value is independent of the choice of $(x,z) \in C_k$.
 - (v) (Vide [1] and [2])

^{*}Assistant Professor, University Department of Mathematics, Vinoba Bhave University, Hazaribag-825301, Jharkhand, India.

1.2 Generalized Directed Association Scheme (GDAS): In 2011 Singh and Manjhi defined a generalization of association scheme known as Generalized Directed Association Scheme (GDAS) as a collection $C = \{C_1, C_2, C_3, ..., C_m\}$ of subsets of $X \times X$ on a finite set X which satisfies the following properties:

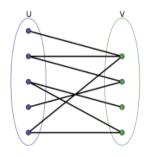
(i)
$$\bigcup_{i=1}^{n} C_i = X \times X$$

(ii) There exist a non negative integer p_{ij}^k for $0 \le i, j \le m$ such that for $(x,z) \in C_k$ the number of elements in the set $S = \{y: (x,y) \in C_i \text{ and } (y,z) \in C_j\}$ is equal to p_{ij}^k and it is independent of the choice of $(x,z) \in C_k$

Another definition of GDAS in terms of adjacency matrices $M_1, M_2, M_3, ..., M_n$ of $C_1, C_2, C_3, ..., C_n$ respectively took the following form:

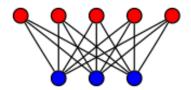
- (i) $\sum_{i=1}^{n} M_i = J = all \ one \ matrix \ of \ order \ |X|$, where X is the finite set over which GDAS is defined.
- (ii) $M_i M_j = \sum_{i=1}^m P_{ij}^k$ where p_{ij}^k are non negative integers. (Vide [3])
- 1.2 Bipartite graph: A bipartite graph is a simple graph in which vertices can be divided into two parts so that every edge connects a vertex of one part to a vertex of another part.

Example:



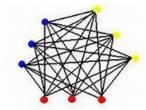
1.3 Complete bipartite graph: A complete bipartite graph is a bipartite graph in which each vertex of one part is connected by an edge to each vertex of another part. The division of set of vertices is called bipartition. If a complete bipartite graph has bipartition (X, Y) with |X| = r and |Y| = s then it is denoted by $K_{r,s}$.

For example: $K_{5,3}$ is



1.4 Complete n-partite graph: A complete n-partite graph is simple graph in which set of vertices can be divided into n-parts $X_1, X_2, X_3, ..., X_n$ so that each vertex of X_i is connected by an edge to each vertex of X_i for $i \neq j$ and $i, j \in \{1, 2, 3, ..., n\}$.

Example of a tripartite graph $K_{3,3,3}$ is



Reference for 1.3, 1.4 and 1.5 is [4]

2. MAIN WORK:

In this paper I forward methods of construction of a class of Generalized Directed Association Scheme (GDAS) from complete bipartite graph $K_{n,m}$.

2.1 construction of a class of Generalized Directed Association Scheme from complete bipartite graph $K_{n,m}$

Consider $K_{n,m}$ where $X_1 = \{u_1, u_2, ..., u_n\}$ and $X_2 = \{v_1, v_2, ..., v_m\}$ are bipartition of the set of vertices $X = \{u_1, u_2, ..., u_n, v_1, v_2, ..., v_m\}$ and construct the following four sets:

$$C_1 = \{(x, y) : if \ x \in X_1 \text{ and } y \in X_2\}$$

$$C_2 = \{(x, y) : if \ y \in X_1 \text{ and } x \in X_2 \}$$

$$C_3 = \{(x, y) : if \ x, y \in X_1\}$$

$$C_4 = \{(x, y) : if \ x, y \in X_2\}$$

Let M_1, M_2, M_3 and M_4 be adjacency matrices of C_1, C_2, C_3 and C_4 respectively then

$$\boldsymbol{M}_1 = \begin{bmatrix} 0 & J_{nm} \\ 0 & 0 \end{bmatrix}$$
, $\boldsymbol{M}_2 = \begin{bmatrix} 0 & 0 \\ J_{mn} & 0 \end{bmatrix}$, $\boldsymbol{M}_3 = \begin{bmatrix} J_{nn} & 0 \\ 0 & 0 \end{bmatrix}$ and $\boldsymbol{M}_3 = \begin{bmatrix} 0 & 0 \\ 0 & J_{mm} \end{bmatrix}$ where J_{uv}

is a all 1 matrix of order $u \times v \quad \forall u, v \in \{n, m\}$ and 0 are the zero matrices of suitable size so that each M_i (i = 1, 2, 3, 4) is a square matrix of order (m + n).

We see the following calculations:

$$1.M_1M_2 = mM_3, M_2M_1 = nM_4$$

$$2.M_1M_3 = 0, M_3M_1 = nM_1$$

$$3.M_1M_4 = mM_1, M_4M_1 = 0$$

$$4.M_2M_3 = nM_2, M_3M_2 = 0$$

$$5.M_2M_4 = 0, M_4M_2 = 3M_2$$

$$6.M_3M_4 = 0 = M_4M_3$$

$$7.M_i^2 = 0$$
 for $i = 1,2$

$$8.M_3^2 = 2M_3, M_4^2 = 3M_4$$

Here we see that each product M_iM_j $(i, j \in \{1,2,3,4\})$ is a linear combination of M_1, M_2, M_3 and M_4

Therefore $C = \{C_1, C_2, C_3, ..., C_m\}$ is a GDAS.

2.2 construction of a class of Generalized Directed Association Scheme from complete bipartite graph $K_{n,n}$

Consider $K_{n,n}$ where $X_1 = \{u_1, u_2, ..., u_n\}$ and $X_2 = \{v_1, v_2, ..., v_n\}$ are bipartition of the set of vertices $X = \{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n\}$ and construct the following two sets:

$$C_1 = \{(x, y) : x \in X_1 \text{ and } y \in X_2 \text{ or } y \in X_1 \text{ and } x \in X_2\}$$

$$C_2 = X \times X - C_1$$

Let M_1 and M_2 be adjacency matrices of C_1 and C_2 respectively then

$$M_1 = \begin{bmatrix} 0 & J_n \\ J_n & 0 \end{bmatrix}$$
 and $M_2 = \begin{bmatrix} J_m & 0 \\ 0 & J_m \end{bmatrix}$ where J_u is a squre matrix with each entry

1 $\forall u \in \{n, m\}$ and 0 are the zero matrices of suitable size so that each M_i (i = 1, 2, 3, 4) is a square matrix of order (2n).

We see the following calculations:

$$1.M_1M_2 = M_2M_1 = M_2$$

$$2.M_i^2 = M_i \text{ for } i = 1,2$$

Here we see that each product $M_i M_j (i, j \in \{1,2\})$ is a linear combination of M_i and M_j .

Therefore $C = \{C_1, C_2\}$ is a GDAS.

2.1 construction of a class of Generalized Directed Association Scheme from complete n-partite graph $K_{r_1}, r_2, ..., r_{r_p}$

Consider
$$K_{\underbrace{r_1, r_2, ..., r_n}_{n \, terms}}$$
 where $X_i = \{u_1^i, u_2^i, ..., u_{r_i}^i\} (i = 1, 2, 3, ..., n)$ are n-partition of

the set of vertices $X = \bigcup_{i=1}^{n} X_i$ and construct the following n^2 sets:

$$C_{ij} = \{(x, y) : x \in X_i \text{ and } y \in X_j\} \text{ for } i \neq j$$

 $C_{ii} = \{(x, y) : x, y \in X_i\} \forall i = 1, 2, 3, 4, ..., n.$

By the above method we can show that these n^2 sets form a GDAS over the set of vertices X.

References

- [1] Bailey, R.A. Association schemes designed experiments, algebra and combinatorics, Cambridge University Press, (2004).
- [2] Bose, R.C. and Shimamoto, T., Classification of analysis of partially balanced incomplete block designs with two associate classes, Journal of the American statistical association,47(1952),151-184.
- [3] M.K. SINGFH AND P.K. MANJHI: Generalized Directed a Association Scheme and its Multiplicative form, International journal of mathematical Sciences and Engineering Applications, ISSN 0973-9424, Vol. No. iii (May, 2012), pp.99-113.
- [4] Wilson, R.J., Introduction to graph theory 4th Edition, Pearson Education, Ltd., 2007.